
Package index
-
check_grim()
- Check plausibility of a reported mean with the GRIM test (Brown & Heathers 2007)
-
discourse
discourse-package
- discourse: Data-simulation via Iterative Stochastic Combinatorial Optimization Using Reported Summary Estimates
-
get_rmse()
- Compute RMSE for a single discourse.object result
-
get_rmse_parallel()
- Compute RMSE metrics across discourse.object runs
-
get_stats()
- Extract statistics from a single discourse.object
-
get_stats_parallel()
- Aggregate statistics across discourse.object runs
-
hill_climb()
- Perform hill-climbing optimization
-
long_to_wide()
- Reshape Data from Long to Wide Format
-
optim_aov()
- Optimize simulated data to match ANOVA F-values
-
optim_lm()
- Optimize simulated data to match target correlations and fixed-effects regression estimates
-
optim_lme()
- Optimize simulated longitudinal mixed-effects data to match target correlations and regression estimates
-
optim_vec()
- Optimize a vector or matrix to match target means and SDs
-
parallel_aov()
- #' Optimize multiple data sets to match ANOVA F-values
-
parallel_lm()
- Optimize multiple simulated data sets to match target correlations and fixed-effects regression fits
-
parallel_lme()
- Optimize multiple simulated longitudinal mixed-effects data to match target correlations and regression estimates
-
plot_cooling()
- Plot cooling schedule of a discourse.object
-
plot_error()
- Plot Error Ratio Evolution for a discourse.object
-
plot_error_ratio()
- Plot Error Ratio Evolution for a discourse.object
-
plot_histogram()
- Plot Histograms for Each Variable
-
plot_partial_regression()
- Partial Regression Plots for a Linear Model
-
plot_rmse()
- Plot RMSE Comparison for discourse.object runs
-
plot_summary()
- Plot Summary of Simulated vs. Target Statistics for a discourse.object
-
print(<summary.discourse.object>)
- Print summary for summary.discourse.object
-
run_app()
- Run the Shiny Application
-
summary(<discourse.object>)
- Summarize a discourse.object
-
weights_est()
- Estimate objective function weights via pilot simulations
-
weights_vec()
- Estimate weighting factors for mean and SD errors
-
wide_to_long()
- Reshape Data from Wide to Long Format